Degree growth of birational maps of the plane
نویسندگان
چکیده
منابع مشابه
Se p 20 05 Periodicities in Linear Fractional Recurrences : Degree growth of birational surface maps
A natural question is: for what values of α and β can (0.1) generate a periodic recurrence? In other words, when does (0.1) generate a periodic sequence (xn) for all choices of x1, . . . , xp? This is equivalent to asking when there is an N such that f α,β is the identity map. Periodicities in recurrences of the form (0.1) have been studied in [L, KG, KoL, GL, CL]. The question of determining t...
متن کاملBirational Cobordisms and Factorization of Birational Maps
In this paper we develop a Morse-like theory in order to decompose birational maps and morphisms of smooth projective varieties defined over a field of characteristic zero into more elementary steps which are locallyétale isomorphic to equivariant flips, blow-ups and blow-downs of toric varieties (see Theorems 1, 2 and 3). The crucial role in the considerations is played by K *-actions where K ...
متن کاملan investigation about the relationship between insurance lines and economic growth; the case study of iran
مطالعات قبلی بازار بیمه را به صورت کلی در نظر می گرفتند اما در این مطالعه صنعت بیمه به عنوان متغیر مستفل به بیمه های زندگی و غیر زندگی شکسته شده و هم چنین بیمه های زندگی به رشته های مختلف بیمه ای که در بازار بیمه ایران سهم قابل توجهی دارند تقسیم میشود. با استفاده از روشهای اقتصاد سنجی داده های برای دوره های 48-89 از مراکز ملی داده جمع آوری شد سپس با تخمین مدل خود بازگشتی برداری همراه با تعدادی ...
15 صفحه اولDynamics of Certain Nonconformal Degree-Two Maps of the Plane
Introduction 1. Definitions and Elementary Results 2. When Disconnected Filled-in Julia Sets are Cantor Sets 3. Smooth Julia Sets 4. Fixed Points 5. Remarks on the Topology of the Connectedness Locus Acknowledgements References We consider the rational maps given by z jzj z c, for z and c complex and fixed and real. The case corresponds to quadratic polynomials: some of the well-known results f...
متن کاملDegree-growth of Monomial Maps
For projectivizations of rational maps Bellon and Viallet defined the notion of algebraic entropy using the exponential growth rate of the degrees of iterates. We want to call this notion to the attention of dynamicists by computing algebraic entropy for certain rationalmaps of projective spaces (Theorem6.2) and comparing it with topological entropy (Theorem 5.1). The particular rational maps w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE
سال: 2015
ISSN: 2036-2145,0391-173X
DOI: 10.2422/2036-2145.201206_003